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Abstract. A numerical solution of the diffusion equation to describe heat or mass transport
inside ellipsoids, considering variable diffusion coefficient and convective boundary
condition is presented. The diffusion equation in prolate spheroidal coordinate system for a
bidimensional case, was used. A finite volume method was employed to discretize the basic
equation utilizing a uniform grid size. The equation was solved iteratively by the Gauss-Seidel
method. To validate the numerical model, the results obtained were compared with the
analytical solution. The model was used to solve the case of wheat grain drying, the results
were compared with experimental data. This technique can be also applied in the processing
of products with variable properties during different processes (drying, wetting, heating and
cooling). The results show also that the model is consistent and it may be used to solve other
cases, like those which include cylinder and sphere geometry and/or those with other
boundary conditions, with small modifications.
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1.  INTRODUCTION

An intense research on mass transfer in solid or porous bodies has been done by various
investigators. From the literature review, it is apparent that only very well known geometric
bodies have been assumed to solve mass diffusion problems, specifically: parallelepipeds,
cylinders and spheres. To get an analytical solution of a partial differential equation with a high
level of complexity is sometimes difficult, in this case a numerical solution may be used to
predict the phenomenon. Numerical studies of heat and mass diffusion in plate, cylinder and
sphere are very well known (Crank ,1992; Gebhart 1993).

In this paper, a methodology of solution is presented for mass diffusion in bodies of
elliptical shape. Previous studies about this subject can be found in Elvira (1990), Lima et al.
(1997), Lima & Nebra (1997). The objective of this study is to describe numerically in 2-D
case, the mass diffusion in the interior of prolate spheroidal solids. The model of liquid
diffusion utilizing variable diffusion coefficient and convective boundary condition was used.



The mass diffusion equation in the prolate spheroidal coordinate system is presented and the
finite volume method utilized to discretize this equation.

2.  MATHEMATICAL FORMULATION

For the problem studied, the following considerations were made:
• Shrinkage of the body is neglected;
• the phenomenon occurs under falling rate;
• the solid is assumed to be homogeneous;
• thermophysical properties were assumed to be dependent of moisture content
• the body is axi-symmetrical around z-axis;
 
 Under the above conditions, assuming that the moisture content gradient is the driving

force of the drying process, the Fick’s second law of diffusion has been used by a number of
investigators. It is also admitted that liquid diffusion is the only mechanism of moisture
movement. The mass diffusion equation in cartesian coordinate system is given by ( Strumillo
and Kudra, 1986):
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 where D is the diffusion coefficient, M is the moisture content and t, is the time.

 In many physical problems it is better to use an orthogonal coordinate system ξ, η, ζ
instead of the cartesian coordinate x, y, z. The choice of a particular coordinate system is
motivated by the geometrical form of the body in study, and can result in a considerably
simplified analysis of the problem. In the case of a body with elliptical geometric form, an
adequate coordinate system is the prolate spheroidal coordinate system. The relations between
cartesian and prolate spheroidal coordinate system are given by (Magnus et al.,1966):
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 where ξ=coshµ; η=cosφ, ζ =cosω and L=(L2
2 - L1

2)1/2
, is the focal length. The domain of the

variables ξ, η and ζ with relation the Figure 1 is given by: 1≤ξ≤L2/L; 0≤η≤1 and 0≤ω≤2π.
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 Figure 1- Characteristics of the prolate spheroidal solid
 

 The surfaces ξ=ξo (constant) are ellipsoids of revolution around z-axis and η=ηo (cte) are
hyperboloids of two sheets. The surfaces ω=ωo (cte) are planes through z-axis. Calculating the



metrical coefficients and with the use of the expression for the Laplacian in prolate spheroidal
coordinate system (Abramowitz & Stegun, 1972) we obtain the mass diffusion equation in
prolate spheroidal coordinate system, Equation (3).
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 Admitting symmetry around the z axis, ∂/∂ω=0 ⇒  ∂/∂ζ=0, the Equation (3) can be written
as follows:
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(4)

 
 with the following boundary conditions:

• Free surface: the diffusive flux is equal to the convective flux at the surface of the
prolate spheroid
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 where hm is the mass transfer coefficient and Me, the equilibrium moisture content.

• Planes of symmetry: the angular and radial gradients of moisture content are equal to
zero at the planes of symmetry.
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• Constant initial conditions in the interior of the solid

M(ξ; η; 0)=Mo = cte

The average moisture content of the body was calculated as follows (Whitaker, 1980):
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In these equations, V is the total volume in the domain considered for the new coordinate
system, calculated according Magnus et al. (1966).



3.  NUMERICAL FORMULATION

Due to the symmetry existing in the body, the computational domain showed in Figure 2
was adopted, where the nodal points (P, N, S, W, E) are also presented.
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Figure 2- Geometrical configuration of the physical problem.

Equation (4) was discretized by a finite-volume method utilizing the practice B (the nodal
points are located in the center of the control-volume) (Patankar, 1980 and Maliska, 1995) in a
uniform grid size. The discretized equation is given below:
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The coefficients AK, K≠P, reflect the contributions of the diffusive transport of M, from
the neighbor nodes in direction to the node P. The quantity S is a source term, it contains the
moisture content at the surface that is added to the nodal points preceding the boundary points.
Only in these nodal points the coefficient AN is equal to zero. For the other nodal points S is
equal to zero and AN is given by the expression presented above.



Considering that the interface i is placed in the midway between P and I, then Di can be
expressed by:

D
D D
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where i represents the interface e, w, n and s.
With known values of M from the immediately preceding solution of the Eq. (7), the set of

equations was solved iteratively using the fully implicit scheme by the Gauss-Seidel method.
The calculation was done utilizing a uniform grid size 20 x 20 points and time interval ∆t=20s.
The results of the moisture content are independent of the grid and time step (Lima et al.,
1997). The calculation starts with the given initial condition and stopped when the following
convergence criteria were satisfied in each point of the computational domain:
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where n represent the n th iteration in each step time.

4.  APLICATIONS

In order to test the formulation presented in this work, two different examples were
analyzed: Transient mass diffusion within a spherical body and the wheat grain drying (variety
AVALON). A computational code called SPHEROIDIFF utilizing the Microsoft Fortran
Power Station was written to solve the set of equations for the moisture content profile and to
determine the average moisture content for the cases studied.

4.1  Diffusion in spherical solid with convection at surface

The first example analyzed was that of a solid sphere at initial condition M*=(M-Me)/(Mo-
Me)=1.0 and subjected to the following boundary condition Bi=hmL/Dp=1.0, where Bi is the
Biot number of mass transfer. In this case, the physical properties were assumed to remain
constant (De=Dw=Dn=De=Dp=constant), in this case the numerical model can be treated with
dimensionless variables (Lima & Nebra, 1998).

The analytical solution is available from the literature and actual values were obtained by
summing the twenty first terms of the infinite series.

As a comment, the exact solution of the diffusion in prolate spheroidal solids subjected to
convection at surface is not reported in the literature.

4.2  Wheat kernel drying

In this example, the wheat drying experimental data presented by Fioreze (1986) through
thin-layer drying equation, were used. The air drying conditions were: temperature, T=55 oC
and relative humidity, RH=6,2%. For the wheat grain we have Mo=0.3350 (d.b.) and
Me=0.0480 (d.b.). Using linear regression technique, Fioreze (1986) determined the following
thin-layer drying equation:
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where t is given in hours, according to the author, the comparison between the predicted and
the experimental data presents an average error of 0.13%. The characteristic data of wheat
utilized in the simulation were (Brooker et al., 1992): L1=0.0015748m and L2=0.0032760 m.
The quantity Mo is the initial moisture content of the grain.

In his study Fioreze (1986) presented a diffusion coefficient as a function of the moisture
content and the temperature obtained by the comparison of the experimental and numerical
data, considering wheat grain as sphere and Fickian diffusion. This equation is presented as
follows:

( )D M Exp a M aa= +1
2 3 (11)

with a1=-2.85554.10-5T+1.6432; a2=0.4113T-30.2634; a3=-2.2776.10-2T-9.7271 and D given
in m2/h. In this equation T is given by in o C.

In the present numerical method wheat grain is considered as na ellipsoid, then it was
necessary to fit the Eq. (11) for the present case multiplying it by a constant ao.

The diffusion and mass transfer coefficients were found by varying the D and hm to
minimize the sum of squared deviations between the actual and predicted data. The relative
deviation between experimental and calculated values (relative residuals, ERMQ) and the
variance (S2) are defined as follows:
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where n is the number of experimental points (Carnahan et al., 1969).
The smallest values of E and S2 were used as a criteria to obtain the best value of the

diffusion coefficient D and mass transfer coefficient.

5.  RESULTS AND DISCUSSIONS

5.1  Example 1

To validate the numerical model, results of this work were compared with analytical
results for sphere (L2/L1=1.0), with Bi=1.0 (Luikov, 1966). The Figure 3 illustrates the
comparison of the concentration ratio obtained numerically in this work with the analytical
solution with twenty terms of the series, for a sphere, as a function of radial position inside the
solid for divers Fourier numbers, defined this time as Dt/R2 (R=L1=L2). As it may be observed,
quasi-complete concordance exists between the results.

Similar agreement was obtained comparing the average concentrations during the process.
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Figure 3 - Comparison between the concentration ratio inside of a sphere (L2/L1=1.0) and
Bi=1.0, obtained by the numerical method, proposed by the authors and the analytical method

(Luikov, 1968)

5.2  Example 2

Figure 4 shows the wheat with its respective numerical grid generated. It must be
observed that the shape of the mesh varies with L2/L1, when L2/L1→∞, the focal point is
dislocated to the surface of the body, the inverse occurs for L2/L1→1, when the focal point
tends to be coincident with the geometrical center of the body.

Observe that on z-y plane, the control-volumes are not uniformly spaced, presenting a
great concentration near the surface of the body, relative to ξ (radial coordinate), and the y
axis relative to η (angular coordinate). That characterizes a non-regular grid; however, in the
ξη  plane, we have a regular grid. This grid has the property that the ratio of lengths of any two
adjacent intervals is a constant and equal to one. In this plane are performed all the numerical
calculations.

The diffusion coefficient and mass transfer coefficient were estimated using experimental
data and admitting that the best fitted value is obtained when the smallest value of E, defined
by Eq. (12), is found. The diffusion and mass transfer coefficients found, were:

( )D M Exp a M aa= +055 1
2 3. hm=15.44.10-7 m/s

These results showed that the difference between the diffusion coefficient obtained
considering the wheat like a sphere and like a prolate spheroid is 45%. This is very significant.

Figure 5 illustrates the comparison between numerical and predicted values of average
moisture content of wheat during drying process. The curve indicates the accuracy with which
the diffusion theory could predict drying behavior. A good agreement can be observed. The
error in the estimation of the diffusion coefficient D, is 0.72% and variance 0.0124% .
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Figure 4 - Numerical grid in the physical plane for the example 2.
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Figure 5 - Predicted and experimental values of dimensionless average moisture content during
thin-layer drying of wheat grain at T= 55oC and RH=6.2%

Figure 6 shows the effect of drying time on the moisture content distribution inside the
wheat grain. The iso-concentration lines, which represent surfaces in the space, are shown. It
can be seen that the difference between the moisture content in the center and focal point is
very great. This is due to the localization of the focal point. These results indicate that mass



diffusion occurs initially faster in the exterior region of the solid, decreasing with the drying
time in direction to the center of the solid.
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Figure 6 - The distribution of the moisture content and the iso-concentration lines inside of
wheat grain in t=1.11 h

The numerical results also indicate that the dependence of the moisture content with the
angular coordinate η, is very strong. The concentration ratio decreases faster in the extremity
of the z axis (z=L2), decreasing this effect to the end of y axis (z=L1). This behavior is due to
the geometrical form of the body.

6.  CONCLUSIONS

The finite volume formulation for the diffusion in prolate spheroid bodies with variable
properties was presented. From the examples shown, it can be concluded that this formulation
is accurate and it is efficient to simulate many practical problems of diffusion such as heating,
cooling, wetting and drying, particularly in prolate spheroids, but it can be used for spheres
also. This formulation is useful also with material variable properties, when there is no an
analytical solution and in cases including other boundary conditions, with small modifications.
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